Noisy MCMC Algorithms for Gibbs Random Fields

Aidan Boland Pierre Alquire, Nial Friel, Richard Everitt (University of Reading)

Investing In Your Future

12/2/14

Outline

- Introduction
- Noisy MCMC
 - Noisy exchange algorithm
 - Noisy Langevin algorithm
 - Metropolis adjusted Langevin algorithm
 - Noisy Metropolis adjusted Langevin algorithm
- Results

Introduction

- What is a graph?
- What is a Gibbs random field?
 - Set of nodes with corresponding random variables (y).

•
$$f(y|\theta) = \frac{1}{z(\theta)} \exp(\theta^T s(y))$$

 They are tricky to work with due to intractable likelihood

•
$$z(\theta) = \sum_{v} \exp\{\theta^{T} s(y)\}$$

Ising example

Introduction

- What is a graph?
- What is a Gibbs random field?
 - Set of nodes with corresponding random variables (y).
 - $f(y|\theta) = \frac{1}{z(\theta)} \exp(\theta^T s(y))$
- They are tricky to work with due to intractable likelihood.
 - $z(\theta) = \sum_{y} \exp\{\theta^{T} s(y)\}$
 - Summation over all possible graphs $\left(2^{\frac{n(n-1)}{2}}\right)$

Ising example

Objectives

- Interested in the posterior distribution $\pi(\theta|y) \propto f(y|\theta)\pi(\theta)$.
- Markov chain Monte Carlo is a general approach to simulate from the posterior.
- Create a Markov chain whose stationary distribution matches the distribution of the posterior.

MCMC

- Simulate a Markov Chain $(\theta_n)_{n\in\mathbb{N}}$ using a transition kernel P where π is invariant under P, $(\pi P = \pi)$.
- Can then use approximation,

$$\frac{1}{N}\sum_{n=1}^{N}f(\theta_n)\approx\int_{\Theta}f(\theta)\pi(d\theta)$$

 To ensure the stationary distribution of the Markov chain matches the posterior distribution, we need conditions on P, such as uniform ergodicity.

$$\sup_{ heta_0} \left\| \delta_{ heta_0} P^n - \pi
ight\| \leq C
ho^n$$

for some $C < \infty$ and $\rho < 1$, where $\|\cdot\|$ is the total variation distance.

MCMC and GRF's

- A natural kernel P exists for Gibbs random fields, however due to the intractability of the likelihood it is not feasible to draw $\theta_{n+1} \sim P(\cdot|\theta_n)$.
- We propose to replace P by an approximation \hat{P} .
- Obviously \hat{P} should be 'close' to P.
- Using the study of stability of Markov chains, it is possible to put an upper bound on the difference between the Markov chains resulting from P and P.

Theorem (Mitrophanov (2005), Corollary 3.1) Let us assume that

 (H1) the Markov chain with transition kernel P is uniformly ergodic:

$$\sup_{\theta_0} \|\delta_{\theta_0} P^n - \pi\| \le C \rho^n$$

for some $C < \infty$ and $\rho < 1$.

Then we have, for any $n \in \mathbb{N}$, for any starting point θ_0 ,

$$\|\delta_{\theta_0} P^n - \delta_{\theta_0} \hat{P}^n\| \le \left(\lambda + \frac{C\rho^{\lambda}}{1-\rho}\right) \|P - \hat{P}\|$$

where
$$\lambda = \left\lceil \frac{\log(1/C)}{\log(\rho)} \right\rceil$$
.

Application of theorem

 Will now show how the theorem can be applied in the case of Gibbs random fields.

Metropolis-Hastings algorithm

- Propose a new value $\theta' \sim h(\cdot | \theta)$
- Accept the θ' with probability:

•
$$\alpha(\theta'|\theta) = \min\left(1, \frac{q_{\theta'}(y)\pi(\theta')h(\theta|\theta')}{q_{\theta}(y)\pi(\theta)h(\theta'|\theta)} \times \frac{Z(\theta)}{Z(\theta')}\right)$$

• Depends on intractable ratio $\frac{Z(\theta)}{Z(\theta')}$

Exchange algorithm

- Introduce an auxiliary variable $(y' \sim f(\cdot | \theta'))$.
- This algorithm samples from the augmented distribution

•
$$\pi(\theta', y', \theta|y) \propto f(y|\theta)\pi(\theta)h(\theta'|\theta)f(y'|\theta')$$

The acceptance ratio then simplifies into:

•
$$\hat{\alpha}(\theta'|\theta, y') = \min\left(1, \frac{q_{\theta'}(y)\pi(\theta')h(\theta|\theta')q_{\theta}(y')}{q_{\theta}(y)\pi(\theta)h(\theta'|\theta)q_{\theta'}(y')} \times \frac{Z(\theta)Z(\theta')}{Z(\theta')Z(\theta)}\right)$$

Noisy exchange algorithm

M-H

•
$$\frac{q_{\theta'}(y)\pi(\theta')h(\theta|\theta')}{q_{\theta}(y)\pi(\theta)h(\theta'|\theta)} \times \frac{Z(\theta)}{Z(\theta')}$$

Exchange

$$\bullet \ \frac{q_{\theta'}(y)\pi(\theta')h(\theta|\theta')}{q_{\theta}(y)\pi(\theta)h(\theta'|\theta)} \times \frac{q_{\theta}(y')}{q_{\theta'}(y')}$$

Noisy exchange algorithm

 Exchange algorithm replaces the ratio of normalising contants.

$$\bullet \ \mathbb{E}_{y' \sim f(\cdot | \theta')} \left(\frac{q_{\theta}(y')}{q_{\theta'}(y')} \right) = \frac{Z(\theta)}{Z(\theta')}$$

 Idea of noisy exchange is to use a better estimate of ratio of normalizing constants.

$$\bullet \ \frac{1}{N} \sum_{i=1}^{N} \frac{q_{\theta}(y')}{q_{\theta'}(y')} = \frac{Z(\theta)}{Z(\theta')}$$

• As $N \to \infty$, the algorithm will create a Markov chain which converges to the true posterior distribution

Noisy exchange theoretical guarantees

- We have replaced α from the original Metropolis Hastings algorithm with an approximation $\hat{\alpha}$.
- Can apply Theorem to show convergence.

Corollary

Let us assume that

- (H1) the Markov chain with transition kernel P is uniformly ergodic holds,
- **(H2)** $\hat{\alpha}(\theta|\theta',y')$ satisfies:

$$\mathbb{E}_{\mathbf{y}' \sim F_{\theta'}} \left| \hat{\alpha}(\theta | \theta', \mathbf{y}') - \alpha(\theta | \theta') \right| \le \delta(\theta, \theta'). \tag{1}$$

Then we have, for any $n \in \mathbb{N}$, for any starting point θ_0 ,

$$\|\delta_{\theta_0} P^n - \delta_{\theta_0} \hat{P}^n\| \le \left(\lambda + \frac{C\rho^{\lambda}}{1-\rho}\right) \sup_{\theta} \int d\theta' h(\theta'|\theta) \delta(\theta,\theta'),$$

where
$$\lambda = \left\lceil \frac{\log(1/C)}{\log(\rho)} \right\rceil$$
.

Noisy exchange theoretical guarantees

For Gibbs random fields we have,

Lemma

 $\hat{a}(\theta'|\theta,y')$ satisfies **(H2)** in the Corollary with

$$\begin{split} \mathbb{E}_{y' \sim f(\cdot \mid \theta')} \left| \hat{a}(\theta, \theta', y') - a(\theta, \theta') \right| &\leq \delta(\theta, \theta') \\ &= \frac{1}{\sqrt{N}} \frac{h(\theta \mid \theta') \pi(\theta') q_{\theta'}(y)}{h(\theta' \mid \theta) \pi(\theta) q_{\theta}(y)} \sqrt{\operatorname{Var}_{y' \sim f(y' \mid \theta')} \left(\frac{q_{\theta_n}(y')}{q_{\theta'}(y')} \right)}. \end{split}$$

Noisy exchange theoretical guarantees

Even further we can show

Theorem

Assuming the space Θ is bounded, then $\hat{\alpha}$ with,

$$\delta(\theta, \theta') \leq \frac{c_h^2 c_\pi^2 \mathcal{K}^4}{\sqrt{N}},$$

and

$$\sup_{\theta_0 \in \Theta} \|\delta_{\theta_0} P^n - \delta_{\theta_0} \hat{P}^n\| \leq \frac{\mathcal{C}}{\sqrt{N}}$$

where $\mathcal{C} = \mathcal{C}(c_{\pi}, c_h, \mathcal{K})$ is explicitly known.

Langevin

Langevin diffusion is defined by the stochastic differential equation

$$d\theta(t) = \nabla \log \pi(\theta(t))dt/2 + db(t),$$

Not possilbe to solve so a discretized version is used

$$heta_{i+1} = heta_i + rac{\Sigma}{2}
abla \log \pi(heta_i) + \epsilon \hspace{0.5cm} \epsilon \sim \textit{N}(0, \Sigma)$$

- Unavailable for GRF's since the gradient, $\nabla \log \pi(\theta_i)$, is in tractable.
- We can use a monte carlo estimate of the gradient to create a noisy Langevin algorithm.

Noisy Langevin

•
$$\nabla \log \pi(\theta|y) = s(y) - \mathbb{E}_{y|\theta}(s(y)) + \nabla \log \pi(\theta)$$

- Can estimate the gradient using monte carlo.
 - Draw $(y_1',...,y_N') \sim f(\cdot|\theta)$

•
$$\widehat{\nabla} \log \pi(\theta|y) = s(y) - \frac{1}{N} \sum_{i}^{N} (s(y_i')) + \nabla \log \pi(\theta)$$

• The noisy langevin algorithm is then:

$$heta_{i+1} = heta_i + rac{\Sigma}{2} \widehat{
abla} \log \pi(heta_i|y) + \epsilon \hspace{0.5cm} \epsilon \sim \textit{N}(0,\Sigma)$$

Noisy Langevin theoretical guarantees

Corollary

- (H1) the Markov chain with transition kernel P is uniformly ergodic holds,
- (H3) the gradient estimator satisfies, for any θ ,

$$\mathbb{E}_{y' \sim F_{\theta_n}} \left\{ \exp \left[\frac{1}{2} \left\| \Sigma^{\frac{1}{2}} (\nabla \log \pi(\theta) - \hat{\nabla}^{y'} \log \pi(\theta)) \right\|^2 \right] - 1 \right\} \leq \delta \qquad (2)$$

for some $\delta > 0$.

Then we have, for any $n \in \mathbb{N}$, for any starting point θ_0 ,

$$\|\delta_{\theta_0} P_{\Sigma}^n - \delta_{\theta_0} \hat{P}_{\Sigma}^n\| \leq \left(\lambda + \frac{C\rho^{\lambda}}{1-\rho}\right) \sqrt{\frac{\delta}{2}}.$$

where
$$\lambda = \left\lceil \frac{\log(1/C)}{\log(\rho)} \right\rceil$$
.

Noisy Langevin theoretical guarantees

Lemma

As soon as $N > 4k\mathcal{S}^2 \|\Sigma\|^2$, assumption **(H3)** is satisfied with

$$\delta = \exp\left(\frac{k\log(N)}{4\mathcal{S}^2\|\Sigma\|^2N}\right) - 1 + \frac{4k\sqrt{\pi}\mathcal{S}\|\Sigma\|}{N} \sim_{N \to \infty} \frac{k\log\left(\frac{N}{k}\right)}{4\mathcal{S}^2\|\Sigma\|^2N}$$

(where
$$\|\Sigma\| = \sup\{\|\Sigma x\|, \|x\| = 1\}$$
).

MALA-Exchange

- Extend the noisy langevin by introducing an accept/reject step.
- Combine with the exchange algorithm.
- The accept/reject step ensures the Markov chain targets the true density.
 - Draw $y' = (y'_1, ..., y'_N) \sim f(\cdot | \theta)$, and calculate $\widehat{\nabla} \log \pi(\theta | y)$
 - Draw $\theta' = \theta_i + \frac{C}{2} \widehat{\nabla} \log \pi(\theta_i) + \epsilon$ where $\epsilon \sim N(0, C)$
 - Accept θ' with probability:

$$\min\left(1,\frac{q_{\theta'}(y)\pi(\theta')h(\theta|\theta')q_{\theta}(y')}{q_{\theta}(y)\pi(\theta)h(\theta'|\theta)q_{\theta'}(y')}\right)$$

Noisy MALA exchange

- Similar to noisy exchange, we can replace the ratio of normalising constants with a Monte carlo approximation.
- No extra computational effort as y'_1, ..., y'_N is already required for the MALA exchange.

$$\bullet \ \frac{1}{N} \sum_{i=1}^{N} \frac{q_{\theta}(y')}{q_{\theta'}(y')} = \frac{Z(\theta)}{Z(\theta')}$$

Results

- Ising study,
 - single parameter model.
- Ergm study,
 - two parameter model.

Ising

- Single parameter model.
- Defined on a rectangular lattice.
- Models spatial distribution of binary variables.

•
$$f(y|\theta) = \frac{1}{Z(\theta)} exp \left\{ \theta \sum_{j=1}^{N} \sum_{i \sim j} y_i y_j \right\}$$

 i ~ j denotes that i and j are neighbours.

Ising example

Ising

- 20 simulated graphs.
- Each a 16x16 lattice.
- True posterior can be calcuated.

Ising data

Ising

ERGM

- Exponential Random Graph Model
- Used in analysis of social networks.

•
$$f(y|\theta) = \frac{q_{\theta}(y)}{Z(\theta)} = \frac{exp(\sum_{i=1}^{m} \theta_{i}s_{i}(y))}{Z(\theta)}$$

- y observed graph.
- s(y) vector of sufficient statistics.

- Florentine Business dataset (around 1430).
- 16 families, each represented by a node.
- Edge between two nodes if the corresponding families have a business connection.
- Fit a 2-dimensional model

$$f(y|\theta) = \frac{1}{Z(\theta)} exp(\theta_1 s_1(y) + \theta_2 s_2(y))$$

 s₁(y) is number of edges in the graph and s₂(y) is the number of two-stars.

	Edge		2-star	
Method	Mean	SD	Mean	SD
BERGM	-2.675	0.647	0.188	0.155
Exchange	-2.573	0.568	0.146	0.133
Noisy Exchange	-2.686	0.526	0.167	0.122
Noisy Langevin	-2.281	0.513	0.081	0.119
MALA Exchange	-2.518	0.62	0.136	0.128
Noisy MALA	-2.584	0.498	0.144	0.113

Table: Posterior means and standard deviation.

References

- Andrieu and Roberts (2009) The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics.
- Mitrophanov (2005) Sensitivity and convergence of uniformly ergodic Markov chains. Journal of applied probability.
- Murray, Ghahramani and MacKay, (2006) MCMC for doubly-intractable distribution. In Proceedings of the 22nd annual conference on uncertainty in artificial intelligence.

END

Any questions?

Funded under the programme for Research in Third-level Institutions and co-funded under the European Regional Development fund