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Introduction

Introduction

@ What is a graph?
@ What is a Gibbs random field?

e Set of nodes with corresponding -
random variables (y).

o f(y10) = 535 exp(07s(y))

Ising example
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Introduction

Introduction

@ What is a graph?
@ What is a Gibbs random field?

e Set of nodes with corresponding -
random variables (y).

o f(y10) = 535 exp(07s(y))

@ They are tricky to work with due to . .
intractable likelihood. I .
e z(0) = Zy exp{07s(y)} Ising example
@ Summation over all possible
graphs (2n(n51))
& =
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Introduction

Objectives

@ Interested in the posterior distribution
7(6]y) oc f(y|0)m(6).

@ Markov chain Monte Carlo is a general approach to
simulate from the posterior.

@ Create a Markov chain whose stationary distribution
matches the distribtuion of the posterior.
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Introduction

@ Simulate a Markov Chain (6,)nen Using a transition kernel
P where = is invariant under P, (7P = ).
@ Can then use approximation,

1 N
N;f(en)N /@ £(0)x(do

@ To ensure the stationary distribution of the Markov chain
matches the posterior distribution, we need conditions on
P, such as uniform ergodicity.

sup ||dg, P" — || < Cp"
0o

for some C < co and p < 1, where || - || is the total varlatlon
distance. =
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Introduction

MCMC and GRF’s

@ A natural kernel P exists for Gibbs random fields, however
due to the intractability of the likelihood it is not feasible to
draw 6,1 ~ P(:|0n).

@ We propose to replace P by an approximation P.
@ Obviously P should be "close‘ to P.

@ Using the study of stability of Markov chains, it is possible
to put an upper bound on the difference between the
Markov chains resulting from P and P.
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Theorem (Mitrophanov (2005), Corollary 3.1)
Let us assume that

@ (H1) the Markov chain with transition kernel P is uniformly
ergodic:
sup [|dg, P" — 7| < Cp"
0o
forsome C < coand p < 1.

Then we have, for any n € N, for any starting point 6o,

A Cp
1602 =601 < (3+ 22 ) 1P = P

log(1/C
where )\ = [%W
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Application of theorem

@ Will now show how the theorem can be applied in the case
of Gibbs random fields.
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Introduction

Metropolis-Hastings algorithm

@ Propose a new value 0" ~ h(-|0)
@ Accept the ¢" with probability:
1Y — mi 9o (y)m(0)h(0]6") ~ Z(6)
o a0 =mn (1. ST < 26))
Z(9)
Z(6")

@ Depends on intractable ratio
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Introduction

Exchange algorithm

@ Introduce an auxiliary variable (y’ ~ f(-|0")).
@ This algorithm samples from the augmented distribution

o (0", y',0ly) oc f(y|0)m(0)h(6"|0)f(y'6")

@ The acceptance ratio then simplifies into:

o (1 WO | ZOZ0)
° &(6'16.y’) = min (1’ L OL UL 2(0/)2(0))
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Noisy exchange algorithm

Noisy Langevin algorithm

Metropolis adjusted Langevin algorithm
Noisy Metropolis adjusted Langevin algorithm

Noisy MCMC

Noisy exchange algorithm

e M-H
o (V) (0')h(6]0")  ~ Z(6)
9o (y)m(0)h(0'10) — Z(¢")

@ Exchange
o (V)7 (0')h(610")  q0(y’)
qo(y)m(0)h(6"16) — gor(¥')
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Noisy exchange algorithm

Noisy Langevin algorithm

Metropolis adjusted Langevin algorithm
Noisy Metropolis adjusted Langevin algorithm

Noisy MCMC

Noisy exchange algorithm

@ Exchange algorithm replaces the ratio of normalising

contants.
9 (y') ) Z(9)
e E, s =
yW(wW) (")
@ Idea of noisy exchange is to use a better estimate of ratio
of normalizing constants.

s Ty ) _ 2(0)
NZqn(y) ~ Z(0)

@ As N — oo, the algorithm will create a Markov chain which
converges to the true posterior distribution

®e o=
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Noisy exchange algorithm
Noisy Langevin algorithm

Noisy MCMC Metropolis adjusted Langevin algorithm

Noisy Metropolis adjusted Langevin algorithm

Noisy exchange theoretical guarantees

@ We have replaced o from the original Metropolis Hastings
algorithm with an approximation &.
@ Can apply Theorem to show convergence.
Corollary
Let us assume that

@ (H1) the Markov chain with transition kernel P is uniformly ergodic
holds,

@ (H2) a(9]0', y’) satisfies:
a01¢’,y") — a(9|9')| <6(0,0"). (1)

EyINFBI

Then we have, for any n € N, for any starting point 6o,
n BSn CPA ’ ’ /
106, P" — 69, P"|| < [ A+ i, sup [ d8'h(6']0)s6(0,0"),
- 7

where \ = ['09(1/0)] M e w—

log(p)
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Noisy exchange algorithm
Noisy Langevin algorithm

Noisy MCMC Metropolis adjusted Langevin algorithm

Noisy Metropolis adjusted Langevin algorithm

Noisy exchange theoretical guarantees

@ For Gibbs random fields we have,
Lemma
a(0'10, y') satisfies (H2) in the Corollary with
EYINf(.\Q/) |é(t9, 9’,}//) — a(6, 9/)’ S 5(9,0/)

= L AOIIOIW0), v,y (20
N h@0)r@0)a(y) \ V1 g (y) )
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Noisy exchange algorithm
Noisy Langevin algorithm

Noisy MCMC Metropolis adjusted Langevin algorithm

Noisy Metropolis adjusted Langevin algorithm

Noisy exchange theoretical guarantees

@ Even further we can show

Theorem
Assuming the space © is bounded, then & with,
cic2Kt
5(6,0") < 2=
0 ="Un

and

sup [|da, P" — d0, P"|| <
0o€0

Sl

where C = C(¢x, ¢h, K) is explicitly known.
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Noisy exchange algorithm

Noisy Langevin algorithm

Metropolis adjusted Langevin algorithm
Noisy Metropolis adjusted Langevin algorithm

Noisy MCMC

Langevin

@ Langevin diffusion is defined by the stochastic differential
equation

do(t) = Vlogr(6(t))dt/2 + db(t),
@ Not possilbe to solve so a discretized version is used
r
Oiv1 =10+ EV log7(6;))+€¢ €~ N(0,X)

@ Unavailable for GRF’s since the gradient, V log 7 (0;), is in

tractable.
@ We can use a monte carlo estimate of the gradient to
create a noisy Langevin algorithm. " & -
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Noisy exchange algorithm

Noisy Langevin algorithm

Metropolis adjusted Langevin algorithm
Noisy Metropolis adjusted Langevin algorithm

Noisy MCMC

Noisy Langevin

® Viogn(0ly) = s(y) — Eye(s(y)) + Vlogw(6)

@ Can estimate the gradient using monte carlo.

e Draw (y{,...,yn) ~ f(-]0) N
o Vlogm(ely) = s(y) - 3 D (s(4)) + V log(0)

@ The noisy langevin algorithm is then:

Y
Oiv1 =10+ EV log 7T(9,'U/) +e€ €~ N(O, Z)
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Noisy exchange algorithm
Noisy Langevin algorithm

Noisy MCMC Metropolis adjusted Langevin algorithm

Noisy Metropolis adjusted Langevin algorithm

Noisy Langevin theoretical guarantees

Corollary

@ (H1) the Markov chain with transition kernel P is uniformly ergodic
holds,

@ (H3) the gradient estimator satisfies, for any 6,
A 2
By ry {exp [% Hz%(V|og7r(0) X |og7r(9))H ] - 1} <5 (2

for some ¢ > 0.
Then we have, for any n € N, for any starting point 6o,

A Cp 5
oo P2 an PRl < (34 22 )2

— |[log(1/C)
where \ = [ 03(s) W
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Noisy exchange algorithm
Noisy Langevin algorithm

Noisy MCMC Metropolis adjusted Langevin algorithm

Noisy Metropolis adjusted Langevin algorithm

Noisy Langevin theoretical guarantees

Lemma

As soon as N > 4kS?||X||?, assumption (H3) is satisfied with

-~ klog(N) 4k/TS||IZ|| klog (%)
0 =exp <4SZ||Z\|2N By T S Y ST

(where ||x[| = sup{[[Zx||, [|x]| = 1}).
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Noisy exchange algorithm

Noisy Langevin algorithm

Metropolis adjusted Langevin algorithm

Noisy Metropolis adjusted Langevin algorithm

Noisy MCMC

MALA-Exchange

@ Extend the noisy langevin by introducing an accept/reject
step.
@ Combine with the exchange algorithm.

@ The accept/reject step ensures the Markov chain targets
the true density.

o Draw y’ = (¥}, ..., ¥i) ~ f(-|6), and calculate ¥ log =(6]y)
o Draw ¢’ = 0; + %@ log m(6;) + €

where € ~ N(0, C)
e Accept ¢’ with probability:

(G ()()h(6010) ()
min (1’ 0 () (O)h(0'|0)q0 () )

i =
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Noisy exchange algorithm

Noisy Langevin algorithm

Metropolis adjusted Langevin algorithm
Noisy Metropolis adjusted Langevin algorithm

Noisy MCMC

Noisy MALA exchange

@ Similar to noisy exchange, we can replace the ratio of
normalising constants with a Monte carlo approximation.

@ No extra computaional effort as y{, ..., yj, is already
required for the MALA exchange.

N /
o LN~ Q) _ Z(9)

N~ ap(y) Z(¢)
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Results

Results

@ Ising study,

e single parameter model.
@ Ergm study,

e two parameter model.
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Results

Ising

@ Single parameter model.
@ Defined on a rectangular lattice.

@ Models spatial distribution of binary
variables.

N
1
o f(ylo) = meXP 9;%)’%

e i~ jdenotes that jand j are Ising example
neighbours.
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15

10

@ 20 simulated graphs.
@ Each a 16x16 lattice.
@ True posterior can be calcuated.

Ising data
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Results

Bias
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Results

ERGM

@ Exponential Random Graph Model
@ Used in analysis of social networks.
q(y) _ exp(3i 0isi(y))
f = = !
* D=7 0
@ y observed graph.
e s(y) vector of sufficient statistics.

LAAAA

link (dyad) Triangles(2)  2-star(onenode)  2-star(twonodes)  3-star
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Results

Florentine business

@ Florentine Business dataset (around 1430).
@ 16 families, each represented by a node.

@ Edge between two nodes if the
corresponding families have a
business connection.

@ Fit a 2-dimensional model
1
f(yl0) = meXp(éh S1(y) + 0252(y)) é ﬁ
e s1(y) is number of edges in the
Florentine data

graph and s,(y) is the number of wu ta
two-stars. -
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Results

Florentine business

Edge 2-star
Method Mean SD Mean SD
BERGM -2.675 0.647 0.188 0.155
Exchange -2.573 0.568 0.146 0.133

Noisy Exchange | -2.686 0.526 0.167 0.122
Noisy Langevin | -2.281 0.513 0.081 0.119
MALA Exchange | -2.518 0.62 0.136 0.128
Noisy MALA -2.584 0.498 0.144 0.113

Table: Posterior means and standard deviation.
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Results

Florentine business

Edge 2star

[ee}
ol --- BERGM < --- BERGM
Exchange Exchange
—— Noisy Exch —— Noisy Exch
@_ B —— Noisy Lang ™ 4 —— Noisy Lang
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<
o
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o \5 T \3 \1 (l-) i
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Results

Florentine business

ACF Edge ACF 2star
7 « Exchange 7 ‘ «+ Exchange
= Noisy Exch 31 = Noisy Exch
* MALA Exch [ee] 3 * MALA Exch
* Noisy MALA Exch O i ‘: + Noisy MALA Exch
< | 3
o
Q
O 4 T T i =
0 50 150 250
Lag
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@ Any questions?
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